skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gardner, Joel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bees (Hymenoptera: Apoidea) are vital components of global ecosystems, yet knowledge of their distribution is limited in many regions. Washington state is located in an ecologically diverse part of North America and encompasses habitat types and plant communities known for high bee species richness. To establish a baseline for future studies on bee communities in the state, we used published and unpublished datasets to develop a preliminary annotated checklist of bees occurring in Washington state. We document, with high confidence, 565 species of bees in Washington and identify an additional 102 species likely to occur in the state. We anticipate future research survey efforts, such as the newly initiated Washington Bee Atlas, will discover several species that have the potential to occur in Washington and provide new data for 84 species which have not been recorded in more than 50 years. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract Sex‐associated differences in behavior can have large ecological consequences, especially in plant–pollinator communities where floral visitor behavior affects plant reproduction. Whether these differences are prevalent enough to impact community‐level processes, however, is unknown. Using 256 plant–pollinator communities, we built networks where the floral interactions of each sex were modeled separately, comparing observations to simulated networks where sex was randomized. We found that (1) in many species the sexes differed in their network roles and visited different partners, with females tending to visit more species and more peripheral species than males; (2) more generalist species differed more in network roles between the sexes; and (3) networks where nodes were separated by sex were more specialized than simulated networks, but were similarly resistant to perturbations. These findings suggest that despite variation among species, sex‐associated differences in behavior are large enough to impact the network roles of male and female pollinators and common enough to influence the interaction patterns of entire plant–pollinator communities. 
    more » « less
  3. Abstract Biodiversity promotes ecosystem function (EF) in experiments, but it remains uncertain how biodiversity loss affects function in larger‐scale natural ecosystems. In these natural ecosystems, rare and declining species are more likely to be lost, and function needs to be maintained across space and time. Here, we explore the importance of rare and declining bee species to the pollination of three wildflowers and three crops using large‐scale (72 sites across 5000 km2), multi‐year datasets. Half of the sampled bee species (82/164) were rare or declining, but these species provided only ~15% of overall pollination. To determine the number of species important to EF, we used two methods of “scaling up,” both of which have previously been used for biodiversity‐function analysis. First, we summed bee species' contributions to pollination across space and time and then found the minimum set of species needed to provide a threshold level of function across all sites; according to this method, effectively no rare and declining bee species were important to pollination. Second, we account for the “insurance value” of biodiversity by finding the minimum set of bee species needed to simultaneously provide a threshold level of function at each site in each year. The second method leads to the conclusion that 25 rare and eight declining bee species (36% and 53% of all rare and declining bee species, respectively) are included in the minimum set. Our findings provide some of the strongest evidence yet that rare and declining species are key to meeting threshold levels of EF, thereby providing a more direct link between real‐world biodiversity loss and EF. 
    more » « less